top of page
Search

Samarbeid for Grønn Vannforvaltning i Asia

  • adrian3270
  • Oct 4
  • 3 min read

Vann er livets essens. I Asia, hvor befolkningen vokser raskt og klimaendringer påvirker miljøet, er det viktigere enn noen gang å forvalte vannressursene på en bærekraftig måte. Samarbeid mellom land, organisasjoner og lokalsamfunn er avgjørende for å oppnå grønn vannforvaltning. I denne bloggen vil vi utforske hvordan samarbeid kan føre til bedre vannforvaltning i Asia, og hvilke tiltak som kan implementeres for å sikre en bærekraftig fremtid.


Betydningen av Vannforvaltning


Vannforvaltning handler om å forvalte vannressurser på en måte som er bærekraftig og rettferdig. I Asia er vannressursene under press fra både befolkningsvekst og klimaendringer. Dette fører til vannmangel, forurensning og ødelagte økosystemer.


For å møte disse utfordringene, må vi forstå viktigheten av samarbeid. Ingen enkeltland kan løse disse problemene alene. Det krever en felles innsats fra alle berørte parter.


Utfordringer i Vannforvaltning


Det er mange utfordringer knyttet til vannforvaltning i Asia. Noen av de mest presserende inkluderer:


  • Vannmangel: Mange regioner opplever alvorlig vannmangel, noe som påvirker både landbruk og husholdninger.


  • Forurensning: Industriell aktivitet og urbanisering fører til forurensning av vannkilder, noe som skader både mennesker og natur.


  • Klimaendringer: Endringer i klimaet fører til uforutsigbare nedbørsmønstre, noe som gjør det vanskeligere å forvalte vannressurser.


Disse utfordringene krever innovative løsninger og samarbeid på tvers av landegrenser.


Samarbeid mellom Land


Samarbeid mellom land er avgjørende for å håndtere vannressurser effektivt. Flere asiatiske land har allerede inngått avtaler for å dele vannressurser. For eksempel, Mekong-elven, som renner gjennom flere land, har et samarbeidssystem som involverer Kambodsja, Laos, Thailand, Vietnam og Myanmar.


Dette samarbeidet har ført til bedre forvaltning av vannressursene i regionen. Landene deler informasjon om vannstand, nedbør og forurensning, noe som gjør det lettere å ta informerte beslutninger.


Lokalsamfunnsengasjement


Samarbeid er ikke bare viktig på nasjonalt nivå, men også lokalt. Lokalsamfunn spiller en viktig rolle i vannforvaltning. De har ofte den beste kunnskapen om lokale forhold og utfordringer.


For eksempel, i India har flere landsbyer dannet vannforvaltningsgrupper. Disse gruppene jobber for å bevare vannkilder og redusere forurensning. De organiserer også opplæring for innbyggerne om bærekraftig vannbruk.


Teknologi og Innovasjon


Teknologi kan også spille en viktig rolle i grønn vannforvaltning. Gjennom samarbeid kan land dele teknologi og innovasjoner som kan forbedre vannforvaltningen.


For eksempel, i Singapore har myndighetene utviklet avanserte systemer for regnvannshåndtering. Dette systemet samler opp regnvann og renser det før det brukes til vanning og andre formål.


Andre land kan lære av Singapores erfaringer og implementere lignende løsninger.


Utdanning og Bevissthet


Utdanning er en nøkkelkomponent i bærekraftig vannforvaltning. Gjennom utdanning kan folk bli mer bevisste på viktigheten av vann og hvordan de kan bidra til å bevare det.


Skoler kan spille en viktig rolle i dette arbeidet. Ved å inkludere vannforvaltning i læreplanen, kan barn lære om bærekraftig vannbruk fra en tidlig alder.


I tillegg kan kampanjer for offentlig bevissthet bidra til å informere folk om vannforvaltning og oppfordre dem til å ta ansvar.


Internasjonale Organisasjoner


Internasjonale organisasjoner som FN og Verdensbanken spiller også en viktig rolle i vannforvaltning. De kan tilby støtte og ressurser til land som ønsker å forbedre sin vannforvaltning.


For eksempel, FNs vannprogram jobber med land for å utvikle bærekraftige vannforvaltningsstrategier. De gir også teknisk bistand og finansiering for prosjekter som fremmer grønn vannforvaltning.


Eksempler på Vel Lykkede Prosjekter


Det finnes mange eksempler på vellykkede prosjekter som har fremmet grønn vannforvaltning gjennom samarbeid.


  • Ganges River Basin Management Plan: Dette prosjektet involverer India og Bangladesh og fokuserer på å forbedre vannkvaliteten i Ganges-elven. Gjennom samarbeid har de utviklet tiltak for å redusere forurensning og bevare økosystemet.


  • The Asian Development Bank (ADB): ADB har finansiert flere prosjekter i Asia som fokuserer på bærekraftig vannforvaltning. Disse prosjektene inkluderer alt fra vannbehandling til opplæring av lokalsamfunn.


Fremtidige Muligheter


Fremtiden for grønn vannforvaltning i Asia ser lovende ut, men det krever fortsatt innsats. Det er viktig å fortsette å bygge partnerskap og samarbeide på tvers av landegrenser.


Noen muligheter for fremtidig samarbeid inkluderer:


  • Felles forskningsprosjekter: Land kan samarbeide om forskning for å utvikle nye teknologier og metoder for vannforvaltning.


  • Utveksling av beste praksis: Land kan lære av hverandre ved å dele erfaringer og suksesshistorier.


  • Regional politikk: Utvikling av felles politikk for vannforvaltning kan bidra til å sikre at alle land jobber mot de samme målene.


En Bærekraftig Fremtid


Samarbeid for grønn vannforvaltning i Asia er ikke bare en nødvendighet, men også en mulighet. Ved å jobbe sammen kan land, organisasjoner og lokalsamfunn skape en bærekraftig fremtid for vannressursene.


Det er på tide å ta ansvar og handle. Hver enkelt av oss kan bidra til å bevare vannressursene for fremtidige generasjoner.


Eye-level view of a community meeting discussing water management
Lokalsamfunn diskuterer vannforvaltning under et møte

Sammen kan vi gjøre en forskjell. La oss fortsette å samarbeide for en grønnere og mer bærekraftig fremtid for vannforvaltning i Asia.

 
 
 

Recent Posts

See All

Comments


Vibrations in Water as a Solution to Severe Water Challenges in Multiple Countries – PureFlow

Problem: Stagnant Water

Water always contains microorganisms, and in nature it is constantly in motion — the more movement, the fresher the water.
However, in water distribution systems such as pipes, the risk of biofilm, bacterial growth, and corrosion increases.
This affects not only water quality but also the pipes that carry it — and ultimately the people who drink and use it.

Even if water leaves the treatment plant clean, its quality may deteriorate along the way through the distribution network.

Biofilm is a slimy layer of microorganisms that protects bacteria from external influences. Chlorine, membrane filtration, and UV light have limited effect, as biofilms can be up to 1,000 times more resistant to disinfection than free-floating bacteria.

Once established, a biofilm acts as a reservoir of bacteria that can multiply, exchange DNA (including resistance genes), and release pathogens back into the water — turning otherwise clean water into a potential health risk.

 

Example from Bangkok, Thailand

In 2023, a study measured levels of nontuberculous mycobacteria (NTM) in tap water, shower water, and Point-of-Use (POU) treated samples.
It showed that stagnant taps or showers had up to 10 times higher bacterial levels than frequently used ones
(source: Mycobacterial contamination in tap and shower waters in Thailand).

This reinforces the argument that moving water is healthier water.
Even in modern taps and showerheads, stagnant water provides ideal conditions for bacterial growth — especially in regions where biofilm formation in pipes is common.

 

Corrosion

Corrosion naturally occurs in pipes due to chemical reactions between metal, water, and oxygen.
When bacteria and biofilm accumulate on the pipe’s inner surface, they create micro-environments with different pH and oxygen levels — a process known as microbially induced corrosion (MIC).
MIC accelerates pipe degradation and increases maintenance costs.

 

Hard Water

Hard water — rich in calcium and magnesium — is another major challenge worldwide.
When such water remains stagnant or heated in pipes, calcium carbonate (CaCO₃) can precipitate as scale deposits, causing corrosion, clogging, reduced pressure, and high maintenance costs.

 

Solution: PureFlow

Using vibrations at optimized frequencies, PureFlow prevents and reduces both biofilm and scale formation in pipes.
The vibrations make it harder for biofilm or mineral crystals to adhere to surfaces and also help dislodge what has already formed.

In short, PureFlow prevents bacteria from building their “defensive walls” inside pipes — and weakens the ones already there.

When it comes to hard water, PureFlow does not remove minerals from the water like ion exchange or reverse osmosis.
Instead, it changes how the minerals crystallize.
Calcium and magnesium ions form small, suspended crystals that remain in solution rather than sticking to pipe walls or equipment.

As a result, the water behaves like “softer” water, with fewer scaling and corrosion problems — and without any chemical additives.

 

Stagnant Water vs. Flowing Water

Water naturally has micro-movements, but PureFlow adds continuous mechanical vibration, amplifying these effects — even in stagnant sections of a system.

PropertyStagnant Water (Glass)Flowing Water (Pipe)Water with PureFlow

Macro-movementNoneYes (flow, turbulence)Yes – continuous vibration even without flow

Radical FormationPossible but limitedMore likely near turbulenceIncreased via vibration + cavitation → more ROS (OH·, H₂O₂)

Biofilm ControlMinimalPartial – flow weakens biofilmActive inhibition and removal – vibration + ROS

Scale ControlNonePartial – ions kept in suspensionHighly effective – prevents deposits, removes existing scale

The difference is that flowing water depends on physical movement, whereas PureFlow delivers energy directly into the water — creating both the “flowing-water effect” and an additional chemical antibacterial effect through Reactive Oxygen Species (ROS).

 

Reactive Oxygen Species (ROS) at the Atomic Level

In addition to vibration, PureFlow also produces cavitation energy, giving water molecules (H₂O) extra energy that can temporarily split them into reactive atoms and radicals — collectively known as Reactive Oxygen Species (ROS).

 

Hydroxyl Radical (OH·)

  • Extremely reactive — attacks bacteria, biofilm, proteins, and DNA.

  • Lacks an electron and “steals” one from nearby molecules, including bacteria.

  • Two OH· radicals can combine to form hydrogen peroxide (H₂O₂).

 

Hydrogen Peroxide (H₂O₂)

  • Less aggressive but more stable and long-lived.

  • Acts as stored disinfection, keeping water clean over time.

  • Used in medicine and water treatment for its effectiveness.

  • Can diffuse into biofilms and release OH· locally — a “Trojan horse” effect.

In simple terms:

  • OH· is like a rapid soldier — attacking instantly.

  • H₂O₂ is like a guard — maintaining a protective presence over time.

 

Process Overview

Vibration from PureFlow
⬇️
Cavitation / added energy in water
⬇️
Splitting of H₂O → OH· (hydroxyl radical)
⬇️
Formation of additional ROS (OH·, H₂O₂)
⬇️
ROS attack bacteria and biofilm
⬇️
Result: Cleaner pipes, fewer bacteria, no biofilm

 

What PureFlow Does Not Solve

PureFlow is not a replacement for water treatment plants, but a secondary technology ensuring that clean water stays clean all the way to the user.

It does not remove:

  • Microplastics

  • Heavy metals (lead, arsenic)

  • Dissolved salts (TDS)

However, neither chlorine nor UV light removes these either.
Only membrane or reverse osmosis (RO) systems can, but they are expensive and require intensive maintenance.

Problem        Chlorine    UV       Membrane/RO         PureFlow

Bacteria✅ short-term✅ localized✅✅ (ROS + biofilm inhibition)

Viruses✅ partial✅✅✅ (ROS)

Biofilm in pipes❌❌❌✅

Plastics❌❌✅❌

Salts (TDS)❌❌✅❌

Chemical useHighLowHighNone

MaintenanceMedium (dosing)High (lamp replacement)HighLow

Interestingly, since micro- and nanoplastics often adhere to biofilm, PureFlow — by reducing and breaking down biofilm — can indirectly help detach plastic particles, allowing them to be captured in existing filtration systems.

Why This Matters

Beyond health and safety, PureFlow offers strong economic benefits:

  • Reduces use of chemicals like chlorine and ozone → lower operating costs

  • Limits corrosion → longer pipe lifespan

  • Simple installation → minimal maintenance

  • Works as a low-cost alternative to UV systems, without consumable parts

Result:
Lower costs, longer infrastructure life, and cleaner water — sustainably.

Where PureFlow Can Have the Greatest Impact

The main challenge lies not only in water treatment plants but in distribution networks.
PureFlow is therefore most effective in regions where water quality deteriorates in pipes, not at the source.

According to the WHO, around 30% of the world’s population lacks access to safe drinking water at home — a vast potential market for such technology.

When selecting pilot locations, three factors matter most:

  1. Climate and biofilm risk: Warmer regions have higher bacterial growth rates.

  2. Existing infrastructure: A functioning distribution network allows measurable results.

  3. Institutional openness: Authorities and universities must be willing to collaborate.

Why Southeast Asia – and Especially Thailand

Southeast Asia combines a warm climate, developed infrastructure, and water quality challenges — a perfect context for testing PureFlow.

In Thailand, water is treated centrally but often becomes contaminated in pipes before reaching users.
This allows PureFlow to demonstrate measurable results within a functioning network.

The country also has strong institutional capacity, with research universities and public utilities already engaged in smart water initiatives and leak-reduction programs.
This makes Thailand — or a similar country in the region — an ideal environment for collaborative pilot testing and validation.

Pilot Project Framework (Generalized)

To ensure neutrality and scalability, a pilot project can be implemented in any water-stressed or infrastructure-ready region, following these stages:

1. Partnership and Local Anchoring (Month 1)

  • Engage local Water Authorities to secure test permissions.

  • Partner with universities or research institutes for analysis and validation.

  • Draft a Memorandum of Understanding (MoU) among PureFlow, authorities, and academic partners.

2. Define Objectives and KPIs (Month 1)

  • Establish measurable indicators: biofilm reduction, bacterial counts (HPC), ORP stability, corrosion indicators.

  • Agree on baseline sampling and analysis methods (HPC, ATP, qPCR).

  • Define success criteria (e.g., >50% reduction in biofilm).

3. Baseline Measurements (Month 2)

  • Install biofilm coupons (removable test surfaces).

  • Measure water quality for 4–6 weeks pre-installation: HPC, ATP, chlorine, ORP, pH, turbidity, Ca/Mg, etc.

  • Record user complaints or operational incidents.

4. Installation (Month 3)

  • Mount PureFlow units on designated test lines.

  • Maintain one control line without PureFlow (A/B testing).

  • Document materials, dimensions, and pressure conditions.

5. Operation and Monitoring (Months 3–5)

  • Weekly monitoring (chlorine, ORP, HPC/ATP, turbidity).

  • Monthly biofilm analysis from coupons.

  • Continuous data logging and maintenance tracking.

6. Evaluation (Month 6)

  • Compare pilot vs. control results.

  • Quantify biofilm reduction, bacterial decrease, and scaling prevention.

  • Estimate economic benefits (reduced chemicals, fewer flushes, lower maintenance).

  • Prepare an English-language pilot report with findings.

7. Scaling and Expansion (Month 6+)

  • Present results to national or regional authorities.

  • Use pilot results as a demonstration case for larger cities or industrial users.

  • Develop a scaling model (PureFlow units per km of pipe, per plant, per building).

Conclusion

PureFlow represents an innovative, sustainable, and cost-effective technology for modern water management.
By combining vibration-based treatment and natural ROS generation, it offers a way to maintain high water quality without chemicals or high energy use.

PureFlow is not just a treatment tool — it is a preventive system that extends infrastructure life, reduces maintenance, and protects public health.

Add your own content here. Click to edit.

bottom of page